The package gsaot
provides a set of tools to compute and plot Optimal Transport (OT) based sensitivity indices. The core functions of the package are:
ot_indices()
: compute OT indices for multivariate outputs using different solvers for OT (network simplex, Sinkhorn, and so on).ot_indices_wb()
: compute OT indices for univariate or multivariate outputs using the Wasserstein-Bures semi-metric.ot_indices_1d()
: compute OT indices for univariate outputs using OT solution in one dimension. The package provides also functions to plot the resulting indices and the inner statistics.
Installation
install.packages("gsaot")
You can install the development version of gsaot from GitHub with:
# install.packages("devtools")
devtools::install_github("pietrocipolla/gsaot")
❗ ❗ Installation note
The sinkhorn
and sinkhorn_log
solvers in gsaot
greatly benefit from optimization in compilation. To add this option (before package installation), edit your .R/Makevars
file with the desired flags. Even though different compilers have different options, a common flag to enable a safe level of optimization is
More detailed information on how to customize the R packages compilation can be found in the R guide.
Example
We can use a gaussian toy model with three outputs as an example:
library(gsaot)
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
x <- data.frame(x)
After having defined the number of partitions, we compute the sensitivity indices using different solvers. First, Sinkhorn solver and default parameters:
M <- 25
sensitivity_indices <- ot_indices(x, y, M)
#> Using default values for solver sinkhorn
sensitivity_indices
#> Method: sinkhorn
#>
#> Indices:
#> X1 X2 X3
#> 0.5656021 0.6131907 0.2594603
#>
#> Upper bound: 97.74799
Second, Network Simplex solver:
sensitivity_indices <- ot_indices(x, y, M, solver = "transport")
#> Using default values for solver transport
sensitivity_indices
#> Method: transport
#>
#> Indices:
#> X1 X2 X3
#> 0.4878673 0.5265048 0.1709062
#>
#> Upper bound: 97.74799
Third, Wasserstein-Bures solver, with bootstrap:
sensitivity_indices <- ot_indices_wb(x, y, M, boot = TRUE, R = 100)
sensitivity_indices
#> Method: wasserstein-bures
#>
#> Indices:
#> X1 X2 X3
#> 0.4591200 0.4921479 0.1073590
#>
#> Advective component:
#> X1 X2 X3
#> 0.28001929 0.31345309 0.09888083
#>
#> Diffusive component:
#> X1 X2 X3
#> 0.179100703 0.178694835 0.008478178
#>
#> Type of confidence interval: norm
#> Number of replicates: 100
#> Confidence level: 0.95
#> Indices confidence intervals:
#> Inputs Index low.ci high.ci
#> 1 X1 WB 0.439721916 0.47851807
#> 2 X2 WB 0.475448734 0.50884711
#> 3 X3 WB 0.087350066 0.12736794
#> 4 X1 Advective 0.267679667 0.29235891
#> 5 X2 Advective 0.303581126 0.32332505
#> 6 X3 Advective 0.081559278 0.11620237
#> 7 X1 Diffusive 0.170346138 0.18785527
#> 8 X2 Diffusive 0.170261391 0.18712828
#> 9 X3 Diffusive 0.003887014 0.01306934
#>
#> Upper bound: 97.85844
Fourth, we can use the package to compute the sensitivity map on the output:
sensitivity_indices <- ot_indices_smap(x, y, M)
sensitivity_indices
#> X1 X2 X3
#> [1,] 0.5744058 0.04464331 0.1685419
#> [2,] 0.2909957 0.71343703 0.1274479