Generates samples from a multivariate Gaussian distribution and evaluates a simple linear transformation model.
Value
A list with two elements:
x
: a numeric matrix of sizeN x 8
containing the input samples.y
: a numeric vector of lengthN
with the corresponding function outputs.
Details
Inputs x
are sampled from:
$$
\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma), \quad \boldsymbol{\mu} = [1, 1, 1], \quad \Sigma = \begin{bmatrix} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{bmatrix}
$$
The output is given by: $$ \mathbf{Y} = A \mathbf{X}^{\top}, \quad A = \begin{bmatrix} 4 & -2 & 1 \\ 2 & 5 & -1 \end{bmatrix} $$
Examples
result <- gaussian_fun(1000)
head(result$x)
#> X1 X2 X3
#> [1,] -0.4000435 0.008374533 0.06703756
#> [2,] 1.2553171 0.940735445 1.16350886
#> [3,] -1.4372636 0.319284534 -0.57963016
#> [4,] 0.9944287 -0.114785226 0.19329631
#> [5,] 1.6215527 0.184863279 0.68936466
#> [6,] 2.1484116 1.247913878 0.97366463
head(result$y)
#> Y1 Y2
#> [1,] -1.549886 -0.8252519
#> [2,] 4.303306 6.0508025
#> [3,] -6.967254 -0.6984744
#> [4,] 4.400582 1.2216350
#> [5,] 6.805849 3.4780572
#> [6,] 7.071483 9.5627280