Generates samples from a multivariate Gaussian distribution and evaluates a simple linear transformation model.
Value
A list with two elements:
x
: a numeric matrix of sizeN x 8
containing the input samples.y
: a numeric vector of lengthN
with the corresponding function outputs.
Details
Inputs x
are sampled from:
$$
\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma), \quad \boldsymbol{\mu} = [1, 1, 1], \quad \Sigma = \begin{bmatrix} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0.5 & 0.5 & 1 \end{bmatrix}
$$
The output is given by: $$ \mathbf{Y} = A \mathbf{X}^{\top}, \quad A = \begin{bmatrix} 4 & -2 & 1 \\ 2 & 5 & -1 \end{bmatrix} $$
Examples
result <- gaussian_fun(1000)
head(result$x)
#> X1 X2 X3
#> [1,] 1.210646 0.6066786 0.48065877
#> [2,] 1.717017 0.5524071 1.66414399
#> [3,] 2.504612 2.3095378 1.74635838
#> [4,] 1.466895 0.6142316 0.01331935
#> [5,] 1.524946 2.1775382 1.30649161
#> [6,] 1.268600 2.8835283 1.93367697
head(result$y)
#> Y1 Y2
#> [1,] 4.109884 4.974026
#> [2,] 7.427396 4.531925
#> [3,] 7.145730 14.810554
#> [4,] 4.652436 5.991629
#> [5,] 3.051201 12.631092
#> [6,] 1.241019 15.021164