Evaluates the Ishigami-Homma function. Input samples are drawn from a uniform distribution over \([-\pi, \pi]^3\)
Value
A list with two elements:
x: a numeric matrix of sizeN x 8containing the input samples.y: a numeric vector of lengthNwith the corresponding function outputs.
Details
The Ishigami-Homma function is defined as: $$Y = \sin(X_1) + A \cdot \sin^2(X_2) + B \cdot X_3^4 \cdot \sin(X_1)$$ where \(X_i \sim \mathcal{U}(-\pi, \pi)\).
Examples
result <- ishi_homma_fun(1000)
head(result$x)
#> X1 X2 X3
#> [1,] -2.28423759 -0.9399756 0.33191817
#> [2,] -0.09561026 -0.3103324 2.08030330
#> [3,] -2.28376501 0.7043859 2.89825661
#> [4,] -2.22049303 2.2053860 -1.09533096
#> [5,] 2.22482608 2.8740950 -0.02519212
#> [6,] -2.77463554 2.8473635 0.09935267
head(result$y)
#> [1] 0.5389623 -1.6968814 -53.2895980 -0.6453498 0.9333679 -0.1906092
