Evaluates the Ishigami-Homma function. Input samples are drawn from a uniform distribution over \([-\pi, \pi]^3\)
Value
A list with two elements:
x
: a numeric matrix of sizeN x 8
containing the input samples.y
: a numeric vector of lengthN
with the corresponding function outputs.
Details
The Ishigami-Homma function is defined as: $$Y = \sin(X_1) + A \cdot \sin^2(X_2) + B \cdot X_3^4 \cdot \sin(X_1)$$ where \(X_i \sim \mathcal{U}(-\pi, \pi)\).
Examples
result <- ishi_homma_fun(1000)
#> Warning: data length [8000] is not a sub-multiple or multiple of the number of rows [2667]
head(result$x)
#> X1 X2 X3
#> [1,] -2.28423759 1.79802532 2.5392859
#> [2,] -0.09561026 -1.44091702 2.7606143
#> [3,] -2.28376501 0.09747321 0.2907198
#> [4,] -2.22049303 -0.72236898 1.1359593
#> [5,] 2.22482608 1.77325241 0.7638785
#> [6,] -2.77463554 -0.14388686 -3.1280338
head(result$y)
#> [1] -30.2940876 -3.6735528 -0.7428849 -1.2478894 2.9829971 -34.6663382