Evaluates the Ishigami-Homma function. Input samples are drawn from a uniform distribution over \([-\pi, \pi]^3\)
Value
A list with two elements:
x
: a numeric matrix of sizeN x 8
containing the input samples.y
: a numeric vector of lengthN
with the corresponding function outputs.
Details
The Ishigami-Homma function is defined as: $$Y = \sin(X_1) + A \cdot \sin^2(X_2) + B \cdot X_3^4 \cdot \sin(X_1)$$ where \(X_i \sim \mathcal{U}(-\pi, \pi)\).
Examples
result <- ishi_homma_fun(1000)
#> Warning: data length [8000] is not a sub-multiple or multiple of the number of rows [2667]
head(result$x)
#> X1 X2 X3
#> [1,] 2.3170769 2.8724647 -0.5008042
#> [2,] 2.6660382 1.1555344 -1.5788171
#> [3,] 0.9763068 -0.2603729 1.6418770
#> [4,] -1.8051860 1.7748163 2.3234449
#> [5,] -2.1210270 1.8700356 -0.5904800
#> [6,] -0.1671461 -0.4621430 1.9807356
head(result$y)
#> [1] 0.9217996 4.9769974 6.9813215 -27.4005703 0.8701644 -2.3295884