Plot Optimal Transport based inner statistics for each partition using
ggplot2
package. If provided, it plots also the uncertainty estimates.
Arguments
- x
An object generated by
ot_indices
,ot_indices_1d
, orot_indices_wb
.- ranking
An integer with absolute value less or equal than the number of inputs. If positive, select the first
ranking
inputs per importance. If negative, select the lastranking
inputs per importance.- wb_all
(default
FALSE
) Logical that defines whether or not to plot the Advective and Diffusive components of the Wasserstein-Bures indices- ...
Further arguments passed to or from other methods.
Examples
N <- 1000
mx <- c(1, 1, 1)
Sigmax <- matrix(data = c(1, 0.5, 0.5, 0.5, 1, 0.5, 0.5, 0.5, 1), nrow = 3)
x1 <- rnorm(N)
x2 <- rnorm(N)
x3 <- rnorm(N)
x <- cbind(x1, x2, x3)
x <- mx + x %*% chol(Sigmax)
A <- matrix(data = c(4, -2, 1, 2, 5, -1), nrow = 2, byrow = TRUE)
y <- t(A %*% t(x))
x <- data.frame(x)
M <- 25
# Get sensitivity indices
sensitivity_indices <- ot_indices(x, y, M)
#> Using default values for solver sinkhorn
plot_inner_stats(sensitivity_indices)